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Blue carbon is all biologically-driven carbon fluxes and
storage in marine systems that are amenable to
management (Pértner et al., IPCC, 2019)

Much of our understanding focuses on Coastal Blue Carbon
Ecosystems

They could offset up to 1-3% of the annual CO, emissions

wecreadie etl, 2021). BUt they are vulnerable, with a loss of surface
area of ~1.5-2% each year regeretal 202)

Pics from McLeod et al. (2011)
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Coastal Blue Carbon cycling
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Graphic from NOAA Climate.gov
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seagrass meadows

NOAA Climate.gov
Data: UNEP WCMC

Potential for Europe: salt marshes (Atlantic
coast, North Sea) and seagrass meadows
(Mediterranean coast).

France (1 MtC/yr) realizes 66% of its annual
| =g’ | sequestration potential within overseas
tidal marshes terrItOFIeS
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National stocks estimates

From Macreadie et al. (2021)
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CBCEs hold potentially 9000 to 33000 MtC globally in soils and biomass... quite large range
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Bertram et al. (2021)

Seagrass meadows 44 + 12 MtC/yr d‘/

MangrOveS 24 i 3 MtC/yr Annual sequestration potential (MtC) NOM Climate.gov
[ [ [ [ e Data: Bertram et al., 2021
Saltmarshes 13+ 1 MtClyr 0 015 045 10 30 70 110

Total Blue Carbon Ecosystems
81 £ 13 MtC/yr = offsets less than 1% annual anthropogenic CO, emissions

This global flux is estimated to have decreased by 25 to 50% compared to preindustrial era
(150 £ 50 MLC/yr) (Regnier et al., 2022).
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Benefits
Climate change mitigation as long-term carbon sink
Wealth of biodiversity
Nursery grounds for fish

Coastal protection from storms
Country-specific wealth of blue carbon
Socioeconomics (fisheries, tourism, carbon crediting...)
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Knowledge gaps

o Extent of CBCEs
= Detailed mapping
= Loss or gain in the surface area?
o Blue carbon flux estimates and Methodology (interlaboratory comparisons —
reproducibility, standardization)
o Reservoir size (carbon stocks) and resilience (carbon fate)
o CBCEs - actually a sink or a source?
= Off-site reservoirs through the export of blue carbon offshore
= CO, emissions
 Respiration of the blue carbon
« Fate of the released Dissolved Organic Carbon
 Carbonate precipitation
= QOther Greenhouse Gas emissions (Methane, nitrous oxyde)
o Kelp forests to be included in the CBCES?
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Challenges

o Vulnerability due to anthropic factors — climate change, sea level rise,
pollution, overexploitation
o Actions to forster and encourage scientific efforts to fill the blue carbon
kwowledge gaps
o Encourage emerging field of research about socioeconomic impact of blue
carbon from local, regional, national to global scales
= Blue carbon crediting and fair redistribution
= Change adaptation, social resilience, food security...
o Policy actions to recognize CBCEs as key ecosystems for mitigation strategies
o Involve decision makers in the protection and restoration in their local CBCEs



Link between science — policy — co-benefits

Data generation Policy uptake
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Fig. 6 | Road map for incorporating data into carbon accounting frameworks and conservation strategies. There are 10
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Pic by . Soulet; view of theLavaI catchment, Draix, France.



2. Rock weathering *Fremer

Geological carbon cycle
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From Hilton and West, 2020.

Fig.1 | The geological carbon cycle and transfers of carbon between the atmosphere and rocks.
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Rock weathering by carbonic acid

Silicate weathering

: ~104
2CO0, + silicate + 3H,0 — Ca?* + 2HCO3 + clay Timescale ~10years
—> CO, sink over geological timescales
Ca* + 2HCO3 — CaCO, + CO, + H,0 —> CO, sink over the timescale of climate

change mitigation

Carbonate weathering

Timescale ~10* years

—> CO, neutral over geological timescales

Ca?* + 2HCO3 — CaCO, + CO, + H,0 —> CO, sink over the timescale of climate change
mitigation

CaCO, + CO, + H,0 — Ca®*" + 2HCO3
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Benefits

o Climate change mitigation through atmospheric CO, removal
o Reduce ocean acidification

Knowledge gaps and challenges

o Refining carbon flux estimates globally and regionally

o Better understanding of the biogeochemical processes involved and their
sensitivity to climate/environment changes (temperature, rainfall/hydrology,
vegetation)

o Observatories: Monitoring, reporting, and verifying the amount of carbon
removed as a result of natural/enhanced weathering reactions

o Agricultural enhanced carbonate and silicate weathering in croplands: large-
scale deployment feasibility, CO, cost, environmental and health and societal
impacts?
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